A Weighted Variant of Riemann - Liouville Fractional Integrals on R n

نویسندگان

  • Zun Wei Fu
  • Shan Zhen Lu
  • Wen Yuan
چکیده

and Applied Analysis 3 Moreover, ∥Hωf∥Lp Rn →Lp Rn A. 1.7 Remark 1.1. Notice that the condition 1.6 implies that ω is integrable on 0, 1 since ∫1 0 ω t dt ≤ ∫1 0 t −n/pω t dt. We naturally assumeω is integrable on 0, 1 throughout this paper. Obviously, Theorem A implies the celebrated result of Hardy et al. 6, Theorem 329 , namely, for all 0 < α < 1 and 1 < p < ∞, ‖Iα‖Lp dx →Lp x−pαdx Γ ( 1 − 1/p) Γ ( 1 α − 1/p) . 1.8 The constant A in 1.6 also seems to be of interest as it equals to p/ p − 1 if ω ≡ 1 and n 1. In this case, Hω is precisely reduced to the classical Hardy operator H defined by Hf x 1 x ∫x 0 f t dt, x > 0, 1.9 which is the most fundamental integral averaging operator in analysis. Also, a celebrated operator norm estimate due to Hardy et al. 6 , that is, ‖H‖Lp R →Lp R p p − 1 1.10 with 1 < p < ∞, can be deduced from Theorem A immediately. Recall that BMO R is defined to be the space of all b ∈ Lloc R such that ‖b‖BMO : sup B⊂Rn 1 |B| ∫ B |b x − bB| dx < ∞, 1.11 where bB 1/|B| ∫ B b and the supremum is taken over all balls B in R n with sides parallel to the axes. It is well known that L∞ R BMO R , since BMO R contains unbounded functions such as log |x|. Another interesting result of Xiao in 5 is that the weighted Hardy operator Hω is bounded on BMO R , if and only if ∫1 0 ω t dt < ∞. 1.12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Gr&uuml;ss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Inverse Stochastic Transfer Principle

In [10] a “direct” stochastic transfer principle was introduced, which represented multiple integrals with respect to fractional Brownian motion in terms of multiple integrals with respect to standard Brownian motion. The method employed in [10] involved an operator Γ (n) H , mapping a class of functions LH to L 2. However, the operator does not map LH onto L 2. Hence Γ (n) H is not invertible....

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function

In this paper we establish new Hermite-Hadamard type inequalities involving fractional integrals with respect to another function. Such fractional integrals generalize the Riemann-Liouville fractional integrals and the Hadamard fractional integrals. c ©2016 All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014